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Abstract—Multi-hop reading comprehension focuses on one type of factoid question, where a system needs to properly integrate

multiple pieces of evidence to correctly answer a question. Previous work approximates global evidence with local coreference

information, encoding coreference chains with DAG-styled GRU layers within a gated-attention reader. However, coreference is

limited in providing information for rich inference. We introduce a new method for better connecting global evidence, which forms more

complex graphs compared to DAGs. To perform evidence integration on our graphs, we investigate two recent graph neural networks,

namely graph convolutional network (GCN) and graph recurrent network (GRN). Experiments on two standard datasets show that

richer global information leads to better answers. Our approach shows highly competitive performances on these datasets without deep

language models (such as ELMo).

Index Terms—Natural language processing, question answering, multi-hop reasoning, graph neural network
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1 INTRODUCTION

RECENT years have witnessed a growing interest in the task
of machine reading comprehension. Most existing work

[1], [2], [3], [4], [5], [6], [7], [8] focuses on a factoid scenario
where the questions can be answered by simply considering
very local information, such as one or two sentences. For
example, to correctly answer a question “What causes precipi-
tation to fall?”, a QA system only needs to refer to one sen-
tence in a passage: “... In meteorology, precipitation is any
product of the condensation of atmospheric water vapor that
falls under gravity. ...”, and the final answer “gravity” is indi-
cated by the keywords of “precipitation” and “falls”.

A more challenging yet practical extension is multi-hop
reading comprehension (MHRC) [9], where a system needs
to properly integrate multiple pieces of evidence to correctly
answer a question. Fig. 1 shows an example, which contains
three associated passages, a question and several candidate
choices. In order to correctly answer the question, a system
has to integrate the facts “The Hanging Gardens are in
Mumbai” and “Mumbai is a city in India”. There are also
some irrelevant facts, such as “The Hanging Gardens pro-
vide sunset views over the Arabian Sea” and “The Arabian
Sea is bounded by Pakistan and Iran”, which make the task

more challenging, as an MHRC model has to distinguish
the relevant facts from the irrelevant ones.

As a practical task, so far MHRC has received increasing
research attention. One notable method, Coref-GRU [10],
uses coreference information to gather richer context for
each candidate. However, one main disadvantage of Coref-
GRU is that the coreferences it considers are usually local
to a sentence, neglecting other useful global information.
In addition, the resulting DAGs are usually very sparse,
thus few new facts can be inferred. The top part of Fig. 2
shows a directed acyclic graph (DAG) with only coreference
edges. In particular, the two coreference edges indicate the
two facts: “The Hanging Gardens provide views over the
Arabian Sea” and “Mumbai is a city in India”, from which
we cannot indicate the ultimate fact, “The Hanging Gardens
are in India”, for correctly answering this instance.

We propose a general graph scheme for evidence integra-
tion, which allows information exchange beyond co-reference
nodes, by allowing arbitrary degrees of the connectivity of the
reference graphs. In general, we want the resulting graphs to
be more densely connected so that more useful facts can be
inferred. For example each edge can connect two related
entity mentions, while unrelated mentions, such as “the Ara-
bian Sea” and “India”, may not be connected. In this paper,
we consider three types of relations as shown in the bottom
part of Fig. 2.

The first type of edges connect the mentions of the same
entity appearing across passages or further apart in the same
passage. Shown in Fig. 2, one instance connects the two
“Mumbai” across the two passages. Intuitively, same-typed
edges help to integrate global evidence related to the same
entity, which are not covered by pronouns. The second type
of edges connect two mentions of different entities within a
context window. They help to pass useful evidence further
across entities. For example, in the bottom graph of Fig. 2,
both window-typed edges of �1 and �6 help to pass evidence
from “The Hanging Gardens” to “India”, the answer of this

� Linfeng Song is with the Tencent AI Lab, Bellevue, WA 98004 USA.
E-mail: freesunshine0316@gmail.com.

� Zhiguo Wang is with the Amazon Web Service, New York, NY 10001
USA. E-mail: zgw.tomorrow@gmail.com.

� Mo Yu and Radu Florian are with the IBM Research, Yorktown Heights,
NY 10598 USA. E-mail: {yum, raduf}@us.ibm.com.

� Yue Zhang is with the Westlake University, Hangzhou, Zhejiang Province
310012, China. E-mail: yue.zhang@wias.org.cn.

� Daniel Gildea is with the Department of Computer Science, University of
Rochester, Rochester, NY 14620 USA. E-mail: gildea@cs.rochester.edu.

Manuscript received 2 May 2019; revised 11 Dec. 2019; accepted 12 Mar.
2020. Date of publication 31 Mar. 2020; date of current version 11 Jan. 2022.
(Corresponding author: Yue Zhang.)
Recommended for acceptance by A. Poulovassilis.
Digital Object Identifier no. 10.1109/TKDE.2020.2982894

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 2, FEBRUARY 2022 631

1041-4347 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Westlake University. Downloaded on January 03,2023 at 05:59:55 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-3502-3574
https://orcid.org/0000-0002-3502-3574
https://orcid.org/0000-0002-3502-3574
https://orcid.org/0000-0002-3502-3574
https://orcid.org/0000-0002-3502-3574
https://orcid.org/0000-0002-2412-6172
https://orcid.org/0000-0002-2412-6172
https://orcid.org/0000-0002-2412-6172
https://orcid.org/0000-0002-2412-6172
https://orcid.org/0000-0002-2412-6172
https://orcid.org/0000-0002-5214-2268
https://orcid.org/0000-0002-5214-2268
https://orcid.org/0000-0002-5214-2268
https://orcid.org/0000-0002-5214-2268
https://orcid.org/0000-0002-5214-2268
mailto:freesunshine0316@gmail.com
mailto:zgw.tomorrow@gmail.com
mailto:yum@us.ibm.com
mailto:raduf@us.ibm.com
mailto:yue.zhang@wias.org.cn
mailto:gildea@cs.rochester.edu


instance. Besides, window-typed edges enhance the relations
between local mentions that can be missed by the sequential
encoding baseline. Finally, coreference-typed edges, each of
which connects a pronoun and the corresponding mention,
are further complimentary to the previous two types, and
thuswe also include them.

Since our generated graphs are complex and can have
cycles, making it difficult to directly apply a DAG network
(e.g. the structure of Coref-GRU), we adopt graph neural
networks [11], which can encode arbitrary graphs. In partic-
ular, we choose graph convolutional network (GCN) and
graph recurrent network (GRN), as they have been shown
successful on encoding semantic graphs [12], dependency
graphs [13], [14], [15], [16], raw texts [17] and other complex
data structures [18], [19], [20].

Given an instance containing several passages and a list of
candidates, we first use NER and coreference resolution tools
to obtain entity mentions, and then create a graph out of the
mentions and relevant pronouns. As the next step, evidence
integration is executed on the graph by adopting a graph neu-
ral network on top of a sequential layer. The sequential layer
learns local representation for each mention, while the graph
network learns a global representation. The answer is decided
by matching the representations of the mentions against the
question representation.

Experiments on WikiHop [9] show that our created graphs
are highly useful forMHRC.On the hold-out testset, it achieves
a highly-competitive accuracy of 65.4 percent. In addition, our
experiments show that the questions and answers are dramati-
cally better connected on our graphs than on the coreference
DAGs, if we map the questions on graphs using the question
subject. Our experiments also show a positive relation between
graph connectivity and end-to-end accuracy.

On the testset of ComplexWebQuestions [21], our method
also achieves better results than all published numbers. To
our knowledge, we are among the first to investigate graph
neural networks on reading comprehension tasks. Our code is
available at https://github.com/freesunshine0316/MHQA.

2 RELATED WORK

Question Answering With Multi-Hop Reasoning. Multi-hop
reasoning is an important ability for dealing with difficult
cases in question answering [22], [23]. Most existing work
on multi-hop QA focuses on hopping over knowledge bases
or tables [24], [25], [26], thus the problem is reduced to
deduction on a readily-defined structure with known rela-
tions. In contrast, we study multi-hop QA on textual data

and we introduce an effective approach for creating evi-
dence integration graph structures over the textual input for
solving our problems. Previous work [7], [27] studying
multi-hop QA on text does not create reference structures.
In addition, they only evaluate their models on a simple
task [28] with a very limited vocabulary and passage length.
Our work is fundamentally different from theirs by model-
ing structures over the input, and we evaluate our models
on more challenging tasks.

Recent work starts to exploit ways for creating structures
from inputs. Talmor and Berant [21] build a two-level compu-
tation tree over each question, where the first-level nodes are
sub-questions and the second-level node is a composition
operation. The answers for the sub-questions are first gener-
ated, and then combined with the composition operation.
They predefine two composition operations, which makes it
not general enough for other QA problems. Dhingra et al. [10]
create DAGs over passages with coreference. The DAGs are
then encoded using a DAG recurrent network. Our work fol-
lows the second direction by creating reasoning graphs on the
passage side. However, we consider more types of relations
than coreference, making a thorough study on evidence inte-
gration. Besides, we also investigate recent graph neural net-
works (namelyGCNandGRN) on this problem.

Being released in the same period and similar to our
work, Cao et al. [29] also proposed a graph-based model
using a GCN for multi-hop reasoning. In addition to the
graph neural network being used, there are also differences
on graph construction: (1) they only consider the question
subject and the candidates as graph nodes, while we con-
sider all named entities (including both the question subject
and the candidates), and (2) they further distinguish inter-
and intra-paragraph edges with the same relation, while we
consider them as the same type. There are also later efforts
that follow this path by explicitly creating graphs for rea-
soning. Tu et al. [30] further propose a heterogeneous graph
network to separately model different types of graph nodes.
Cao et al. [31] enrich a graph-based model with rich features
of POS and NER tags, and they also add a bi-directional
attention module to their model.

Question Answering Over Multiple Passages. Recent efforts
in open-domain QA start to generate answers from multiple
passages instead of a single passage. However, most exist-
ing work on multi-passage QA selects the most relevant
passage for answering the given question, thus reducing the
problem to single-passage reading comprehension [32],
[33], [34], [35], [36]. Our method is fundamentally different
by truly leveraging multiple passages.

A fewmulti-passage QA approachesmerge evidence from
multiple passages before selecting an answer [37], [38], [39].
Similar to our work, they combine evidences from multiple
passages, thus fully utilizing input passages. The key differ-
ence is that their approaches focus on how the contexts of a
single answer candidate from different passages could cover
different aspects of a complex question, while our approach
studies how to properly integrate the related evidence of an
answer candidate, some of which come from the contexts of
different entity mentions. This increases the difficulty, since
those contexts do not co-occur with the candidate answer nor
the question.When a piece of evidence does not co-occurwith
the answer candidate, it is usually difficult for these methods

Fig. 1. An example from WikiHop [9], where some relevant entity
mentions and their anaphoric pronouns are highlighted.
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to integrate the evidence. This is also demonstrated by our
empirical comparison, where our approach shows much bet-
ter performance than combining only the evidence of the
same entitymentions.

3 BASELINE

As shown in Fig. 3, we introduce two baselines, which are
inspired by Dhingra et al. [10]. The first baseline, Local, uses
a standard BiLSTM layer (shown in the green dotted box),
where inputs are first encoded with a BiLSTM layer, and
then the representation vectors for the mentions in the pas-
sages are extracted, before being matched against the ques-
tion for selecting an answer. The second baseline, Coref
LSTM, differs from Local by replacing the BiLSTM layer
with a DAG LSTM layer (shown in the orange dotted box)
for encoding additional coreference information, as pro-
posed by Dhingra et al. [10].

3.1 Local: BiLSTM Encoding

Given a list of relevant passages, we first concatenate them
into one large passage p1; p2 . . . pN , where each pi is a pas-
sage word and xxpi is the embedding of it. It adopts a Bi-
LSTM to encode the passage:

hh
 i

p ¼ LSTMð hh iþ1
p ; xxpiÞ

hh
!i

p ¼ LSTMð hh!i�1
p ; xxpiÞ:

Each hidden state contains the information of its local con-
text. Similarly, the question words q1; q2 . . . qM are first con-
verted into embeddings xxq1 ; xxq2 . . .xxqM before being
encoded by another BiLSTM:

hh
 j

q ¼ LSTMð hh jþ1
q ; xxqjÞ

hh
!j

q ¼ LSTMð hh!j�1
q ; xxqjÞ:

3.2 Coref LSTM: DAG LSTM Encoding With
Conference Knowledge

Taking the passage word embeddings xxp1 ; . . . xxpN and core-
ference information as the input, the DAG LSTM layer enco-
des each input word embedding (such as xxpj ) with the
following gated operations:1

iij ¼ s WWixxpj þ UUi

X

i2NðjÞ
hh
!i

p þ bbi

0
@

1
A

ooj ¼ s WWoxxpj þ UUo

X

i2NðjÞ
hh
!i

p þ bbo

0
@

1
A

ffi;j ¼ sðWWfxxpj þ UUf hh
!i

p þ bbfÞ

uuj ¼ s WWuxxpj þ UUu

X

i2NðjÞ
hh
!i

p þ bbu

0
@

1
A

cc!j
p ¼ iij � uuj þ

X

i2NðjÞ
ffi;j � cc!i

p

hh
!j

p ¼ ooj � tanhð cc!j
pÞ;

Nj represents all preceding words of pj in the DAG, iij, ooj
and ffi;j are the input, output and forget gates, respectively.
WWx, UUx and bbx (x 2 fi; o; f; ug) are model parameters.

3.3 Representation Extraction

After encoding both the passage and the question, we
obtain a representation vector for each entity mention �k,
spanning from ki to kj, by concatenating the hidden states
of its start and end positions, before they are correlated with
a fully connected layer:

hhk
� ¼WW 1½ hh 

ki

p ; hh
!ki

p ; hh
 kj

p ; hh
!kj

p � þ bb1, (1)

where WW 1 and bb1 are model parameters for compressing the
concatenated vector. Note that the current multi-hop read-
ing comprehension datasets all focus on the situation where
the answer is a named entity. Similarly, the representation
vector for the question is generated by concatenating the
hidden states of its first and last positions:

hhq ¼WW 2 hh
 1

q ; hh
!1

q ; hh
 M

q ; hh
!M

q

� �
þ bb2; (2)

whereWW 2 and bb2 are also model parameters.

3.4 Attention-Based Matching

Given the representation vectors for the question and the
entity mentions in the passages, an additive attention model

Fig. 3. Baselines. The upper dotted box is a DAG LSTM layer with addi-
tion coreference links, while the bottom one is a typical BiLSTM layer.
Either layer is used.

Fig. 2. A DAG generated by Dhingra et al. [10] (top) and a graph by con-
sidering all three types of edges (bottom) on the example in Fig. 1.

1. Only the forward direction is shown for space consideration
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[40] is adopted by treating all entity mention representations
and the question representation as thememory and the query,
respectively. In particular, the probability for a candidate c’
being the answer given inputX is calculated by summing up
all the occurrences of c’ across the input passages:

pðc’jXÞ ¼
P

k2N c’
ak

P
k02N c

ak0
, (3)

where N c’ and N c represent all occurrences of the candi-
date c’ and all occurrences of all candidates, respectively.
Previous work [35] shows that summing the probabilities
over all occurrences of the same entity mention is important
for the multi-passage scenario. ak is the attention score for
the entity mention �k, calculated by an additive attention
model shown below:

ek0 ¼ vvTa tanhðWWahh
k
� þ UUahhq þ bbaÞ (4)

ak ¼ expðek0ÞP
k02N expðek00 Þ

, (5)

where vva, WWa, UUa and bba are model parameters, and N rep-
resents all occurrences of all entities.

3.5 Comparison With Dhingra et al. [10]

The Coref-GRU model [10] is based on the gated-attention
reader (GA reader) [6], which is designed for the cloze-style
reading comprehension task [1], where one token is selected
from the input passages as the answer for each instance. To
adapt their model for the WikiHop benchmark, where an
answer candidate can contain multiple tokens, they first gen-
erate a probability distribution over the passage tokens with
GA reader, and then compute the probability for each candi-
date c by aggregating the probabilities of all passage tokens
that appear in c and renormalizing over the candidates.

In addition to using LSTM instead of GRU, the main dif-
ference between our two baselines and Dhingra et al. [10] is
that our baselines consider each candidate as a whole unit
no matter whether it contains multiple tokens or not. This
makes our models more effective on the datasets containing
phrasal answer candidates.

4 EVIDENCE INTEGRATION WITH GRAPH

NEURAL NETWORKS

Over the representation vectors for a question and the corre-
sponding entity mentions, we build an evidence integration
graph of the entity mentions by connecting relevant mentions
with edges, and then integrating relevant information for each
graph node (entity mention) with a graph recurrent network
(GRN) [12], [17] or a graph convolutional network (GCN)
[41].2 Fig. 4 shows the overall procedure of our approach.

4.1 Graph Construction

As a first step, we create a graph from a list of input passages.
The entity mentions within the passages are taken as the
graph nodes. They are automatically generated by NER and

coreference annotators, so that each graph node is either an
entity mention or a pronoun representing an entity. We then
create a graph by ensuring that edges between two nodes fol-
low the situations below:

� They are occurrences of the same entitymention across
passages or with a distance larger than a threshold tL
when being in the same passage.

� One is an entity mention and the other is its corefer-
ence pronoun. This information is automatically gen-
erated by a coreference resolution toolkit.

� Between two mentions of different entities in the
same passage within a window threshold of tS .

Between every two entities that satisfy the situations above,
we make two edges in opposite directions. As a result, each
generated graph can also be considered as anundirected graph.

4.2 Evidence Integration With Graph Encoding

Tackling multi-hop reading comprehension requires infer-
ring on global context. As the next step, we merge related
information through the three types of edges just created.
We investigate two recent graph networks: GRN and GCN.

Graph Recurrent Network (GRN). GRNmodels a graph as a
single state, performing recurrent information exchange
between graph nodes through graph state transitions. For-
mally, given a graph G ¼ ðV;EÞ, a hidden state vector sk is
created to represent each entity mention �k 2 V . The state of
the graph can thus be represented as:

gg ¼ fsskgj�k 2 V;

In order to integrate non-local evidence amongnodes, informa-
tion exchange between neighborhooding nodes is performed
through recurrent state transitions, leading to a sequence of
graph states gg0; gg1; . . . ; ggT , where ggT ¼ fsskTgj�k 2 V and T is a
hyperparameter representing the number of graph state transi-
tion decided by a development experiment. For initial state
gg0 ¼ fssk0gj�k 2 V , we initialize each ssk0 by:

ssk0 ¼WW 3½hhk
� ;hhq� þ bb3, (6)

where hhk
� is the corresponding representation vector of

entity mention �k, calculated by Equation 1. hhq is the ques-
tion representation.WW 3 and bb3 are model parameters.

Fig. 4. Model framework.

2. We consider investigating other graph neural networks (such as
Beck et al. [42]) as a future work.
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A gated recurrent neural network is used to model the
state transition process. In particular, the transition from
ggt�1 to ggt consists of a hidden state transition for each node.
At each step t, direct information exchange is conducted
between a node and all its neighbors via the following
LSTM [43] operations:

iikt ¼ sðWWimm
k
t þ bbiÞ

ookt ¼ sðWWomm
k
t þ bboÞ

ffk
t ¼ sðWWfmm

k
t þ bbfÞ

uuk
t ¼ sðWWumm

k
t þ bbuÞ

cckt ¼ ffkt � cckt�1 þ iikt � uuk
t

sskt ¼ ookt � tanhðcckt Þ,

(7)

where cckt is the cell vector to record memory for sskt , and iikt , oo
k
t

and ffk
t are the input, output and forget gates, respectively.

WWx and bbx (x 2 fi; o; f; ug) are model parameters. mmk
t is the

sum of the neighborhood hidden states for the node �k:
3

mmk
t ¼

X

i2NðkÞ
ssit�1; (8)

NðkÞ represents the set of all neighbors of �k.
Graph Convolutional Network (GCN). GCN is a convolu-

tion-based alternative to GRN for encoding graphs. Similar
with GRN, encoding with a GCN model consists of two
main steps: state initialization and state update. For state
initialization, GCN adopts the same approach as with GRN
by initializing from the representations vectors of entity
mentions, as shown in Equation (6). The main difference
between GCN and GRN is the way for updating node states.
GRN adopts gated operations (shown in Equation (7)),
while GCN uses linear transportation with ReLU as the acti-
vation function:

sskt ¼ ReLUðWWgmm
k
t þ bbgÞ, (9)

where mmk
t is also the sum of the neighborhood hidden states

defined in Equation (8).WWg and bbg are model parameters.

4.3 Matching and Combination

After evidence integration, we match the hidden states at
each graph encoding step with the question representation
using the same additive attention mechanism introduced in
the Baseline section. In particular, for each entity �k, the
matching results for the baseline and each graph encoding
step t are first generated, before being combined using a
weighted sum to obtain the overall matching result:

ekt ¼ vvTat tanhðssktWWat þ hhqUUat þ bbatÞ (10)

ek ¼ wwc � ½ek0; ek1; . . . ; ekT � þ bc, (11)

where ek0 is the baseline matching result for �k, e
k
t is the match-

ing results after t steps, and T is the total number of graph
encoding steps.WWat , UUat , vvat , bbat ,wwc and bc aremodel parame-
ters. In addition, a probability distribution is calculated from

the overall matching results using softmax, similar to
Equation (5). Finally, probabilities that belong to the same
entity mention are merged to obtain the final distribution, as
shown in Equation (3).

5 TRAINING

We train both the baseline and our models using the cross-
entropy loss:

l ¼ �log pðc�’jX; uÞ, (12)

where c�’ is ground-truth answer, X and u are the input and
model parameters, respectively. Adam [44] with a learning
rate of 0.001 is used as the optimizer. Dropout with rate 0.1 and
a l2 normalizationweight of 10�8 are used during training.

6 EXPERIMENTS ON WIKIHOP

In this section, we study the effectiveness of rich types of
edges and the graph encoders using theWikiHop [9] dataset.

6.1 Data

The dataset contains around 51K instances, including 44 K
for training, 5K for development and 2.5K for held-out test-
ing. Each instance consists of a question, a list of associated
passages, a list of candidate answers and a correct answer.
One example is shown in Fig. 1. We use Stanford CoreNLP
[45] to obtain coreference and NER annotations. Then the
entity mentions, pronoun coreferences and the provided
candidates are taken as graph nodes to create an evidence
graph. The distance thresholds (tL and tS , in Section 4.1) for
making same and window typed edges are set to 200 and 20,
respectively.

6.2 Settings

We study the model behavior on the WikiHop devset,
choosing the best hyperparameters for online system evalu-
ation on the final holdout testset. Our word embeddings are
initialized from the 300-dimensional pretrained Glove word
embeddings [46] on Common Crawl, and are not updated
during training.

For model hyperparameters, we set the graph state tran-
sition number as 3 according to development experiments.
Each node takes information from at most 200 neighbors,
where same and coref typed neighbors are kept first. The
hidden vector sizes for both bidirectional LSTM and GRN
layers are set to 300.

6.3 Development Experiments

Fig. 5 shows the devset performances of our model using
GRN or GCN with different transition steps. It shows the
baseline performances when transition step is 0. The per-
formances go up for both models when increasing the tran-
sition step to 3. Further increasing the transition step leads
to a slight decrease in performance. One reason can be that
executing more transition steps may also introduce more
noise through richly connected edges. We set the transition
step to 3 for all remaining experiments. GRN shows slightly
better performances than GCN with the increase of transi-
tion steps. However, the gap is not very significant, with the
main reason being the small number of steps (up to 4).

3. We tried distinguishing neighbors by different types of edges, but
it does not improve the performance.
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6.4 Main Results

Table 1 shows the main comparison results with existing
work. GA w/ GRU and GA w/ Coref-GRU correspond to
Dhingra et al. [10], and their reported numbers are copied.
The former is their baseline, a gated-attention reader [6],
and the latter is their proposed method.

For our baselines, Local and Local-2L encode passages
with a BiLSTM and a 2-layer BiLSTM, respectively, both
only capture local information for each mention. We intro-
duce Local-2L for better comparison, as our models have
more parameters than Local. Coref LSTM is another baseline,
encoding passages with coreference annotations by a DAG
LSTM (Section 3.2). This is a reimplementation of Dhingra
et al. [10] based on our framework. Coref GRN is another
baseline that encodes coreferences with GRN. It is for con-
trasting coreference DAGs with our evidence integration
graphs. MHQA-GCN and MHQA-GRN correspond to our
evidence integration approaches via graph encoding, adopt-
ing GCN and GRN for graph encoding, respectively.

First, even our Local show a much higher accuracy com-
pared with GAw/ GRU and GA w/ Coref-GRU. This is because
our models are more compatible with the evaluated dataset.
In particular, GA w/ GRU and GA w/ Coref-GRU calculate the
probability for each candidate by summing up the probabili-
ties of all tokens within the candidate. As a result, they cannot
handle phrasal candidates very well, especially for the over-
lapping candidates, such as “New York” and “New York
City”. On the other hand, we consider each candidate answer
as a single unit, and does not suffer from this issue. As a reim-
plementation of their idea, Coref LSTM only shows 0.4 points
gains over Local, a stronger baseline than GA w/ GRU. On the
other hand, MHQA-GCN and MHQA-GRN are 1.6 and 1.8
points more accurate than Local, respectively. Our Local base-
line achieves a decent number without the help of explicit
multi-hop operations. The reason, as mentioned recently [49],
is that many easy instances can be inferred from the entity
types of candidates. But, our model still largely improves the
performance by tacklingmore difficult instances.

The comparisons belowhelp to further pinpoint the advan-
tage of our approach: MHQA-GRN is 1.4 points better than
Coref GRN , while Coref GRN gives a comparable performance
with Coref LSTM. Both comparisons show that our evidence
graphs are the main reason for achieving the 1.8-points
improvement, and it is mainly because our evidence graphs
are better connected than coreference DAGs and are more

suitable for integrating relevant evidence. Local-2L is not sig-
nificantly better than Local, meaning that simply introducing
more parameters does not help.

In addition to the systems above, we introduce Fully-Con-
nect-GRN for demonstrating the effectiveness of our evidence
graph creating approach. Fully-Connect-GRN creates fully
connected graphs out of the entity mentions, before encoding
themwith GRN.Within each fully connected graph, the ques-
tion is directly connected with the answer. However, fully
connected graphs are brute-force connections, and are not
representative for integrating related evidence. MHQA-GRN
is 1.5 points better than Fully-Connect-GRN, while questions
and answers are more directly connected (with distance 1 for
all cases) by Fully-Connect-GRN. The main reason can be that
our evidence graphs only connect related entity mentions,
making our models easier to learn how to integrate evidence.
On the other hand, there are barely learnable patterns within
fully connected graphs. More analyses on the relation
between graph connectivity and end-to-end performance will
be shown in later paragraphs.

We observe some recent papers showing better results on
the leaderboard.4 The last group of Table 1 shows the top
two published non-ensemble models, where Reasoning
Chain uses a BERT [50] model, and DynSAN adopts a very
deep model architecture that needs 4 12GB GPUs for train-
ing. Our main contribution is studying an evidence integra-
tion approach, which is orthogonal to the contribution of
BERT and other deep model-framework design. We will
investigate these in a future version.

6.5 Analysis

Effectiveness of Edge Types. Table 2 shows the ablation study of
different types of edges that we introduce for evidence inte-
gration. The first group shows the situations where one type
of edges are removed. In general, there is a large performance
drop by removing any type of edges. The reason can be that
the connectivity of the resulting graphs is reduced, thus fewer
facts can be inferred. Among all these types, removing win-
dow-typed edges causes the least performance drop. One pos-
sible reason is that some information captured by them has

Fig. 5. DEV performances of different transition steps.

TABLE 1
Main Results on WikiHop, Where Systems With y Indicates

Using a Deep Language Model or a Gigantic Model Architecture

Model Dev Test

GA w/ GRU [10] 54.9 –
GA w/ Coref-GRU [10] 56.0 59.3

Local 61.0 –
Local-2L 61.3 –
Coref LSTM 61.4 –
Coref GRN 61.4 –
Fully-Connect-GRN 61.3 –
MHQA-GCN 62.6 –
MHQA-GRN 62.8 65.4

Reasoning Chain [47]y – 76.5
DynSAN [48]y – 71.4

4. https://qangaroo.cs.ucl.ac.uk/leaderboard.html, as of Dec. 11th,
2019.
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been well captured by sequential encoding. However, win-
dow-typed edges are still useful, as they can help passing evi-
dence through to further nodes. Take Fig. 2 as an example,
two window-typed edges help to pass information from “The
Hanging Gardens” to “India”. The other two types of edges
are slightly more important than window-typed edges. Intui-
tively, they help to gather more global information than win-
dow-typed edges, thus learn better representations for entities
by integrating contexts from their occurrences and co-
references.

The second group of Table 2 shows the model performan-
ces when only one type of edges are used. None of the per-
formances with single-typed edges are significantly better
than the Local baseline, whereas the combination of all types
of edges achieves a much better accuracy (1.8 points) than
Local. This indicates the importance of evidence integration
over better connected graphs.We showmore detailed quanti-
tative analyses later on. The numbers generally demonstrate
the same patterns as the first group. In addition, only same is
slightly better than only coref. It is likely because some corefer-
ence information can also be captured by sequential encoding.

Distance. Fig. 6 shows the percentage distribution of dis-
tances between a question and its closest answer when
either all types of edges are adopted or only coreference
edges are used. The subject of each question5 is used to
locate the question on the corresponding graph.

When all types of edges are adopted, the questions and
the answers for more than 90 percent of the development
instances are connected, and the question-and-answer dis-
tances for more than 70 percent are within 3. On the other
hand, the instances with distances longer than 4 only count
for 10 percent. This can be the reason why performances do
not increase when more than 3 transition steps are per-
formed in our model. The advantage of our approach can
be shown by contrasting the distance distributions over
graphs generated either by the baseline or by our approach.

We further evaluate both approaches on a subset of the
development instances, where the answer-and-question dis-
tance is at most 3 in our graph. The accuracies of Coref LSTM
and MHQA-GRN on this subset are 61.1 and 63.8, respec-
tively. Comparing with the performances on the whole dev-
set (61.4 vs 62.8), the performance gap on this subset is
increased by 1.3 points. This indicates that our approach
can better handle these “relatively easy” reasoning tasks.

However, as shown in Fig. 5, instances that require large
reasoning steps are still challenging to our approach.

7 EXPERIMENTS ON COMPLEXWEBQUESTIONS

In this section, we conduct experiments on the newly
released ComplexWebQuestions version 1.1 [21] for better
evaluating our approach. Compared with WikiHop, where
the complexity is implicitly specified in the passages, the
complexity of this dataset is explicitly specified on the ques-
tion side. One example question is “What city is the birth-
place of the author of ‘Without end”’. A two-step reasoning
is involved, with the first step being “the author of ‘Without
end”’ and the second being “the birthplace of x”. x is the
answer of the first step.

In this dataset, web snippets (instead of passages as in
WikiHop) are used for extracting answers. The baseline of
Talmor and Berant [21] (SimpQA) only uses a full question
to query the web for obtaining relevant snippets, while their
model (SplitQA) obtains snippets for both the full question
and its sub-questions. With all the snippets, SplitQA models
the QA process based on a computation tree6 of the full
question. In particular, they first obtain the answers for the
sub-questions, and then integrate those answers based on
the computation tree. In contrast, our approach creates a
graph from all the snippets, thus the succeeding evidence
integration process can join all associated evidence.

Main Results. As shown in Table 3, similar to the observa-
tions inWikiHop, bothMHQA-GRN andMHQA-GCN achieve
large improvements over Local, and MHQA-GRN gives
slightly better accuracy. Both the baselines and ourmodels use
all web snippets, but MHQA-GRN and MHQA-GCN further
consider the structural relations among entity mentions.
SplitQA achieves 0.5 percent improvement over SimpQA.7 Our
Local baseline is comparable with SplitQA and our graph-
based models contribute a further 2 percent improvement
over Local. This indicates that considering structural informa-
tion on passages is important for the dataset.

Analysis. To deal with complex questions that require
evidence from multiple passages to answer, previous work

TABLE 2
Ablation Study on Different Types

of Edges Using GRN as the
Graph Encoder

Edge type Dev

all types 62.8
w/o same 61.9
w/o coref 61.7
w/o window 62.4

only same 61.6
only coref 61.4
only window 61.1

Fig. 6. Distribution of distances between a question and an answer on
the DEVSET.

5. As shown in Fig. 1, each question has a subject, a relation and asks
for the object.

6. A computation tree is a special type of semantic parse, which has
two levels. The first level contains sub-questions and the second level is
a composition operation.

7. Upon the submission time, the authors of ComplexWebQuestions
have not reported testing results for the two methods. To make a fair
comparison we compare the devset accuracy.
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[37], [38], [39] collect evidence from occurrences of an
entity in different passages. The above methods corre-
spond to a special case of our method, i.e. MHQA with
only the same-typed edges. From Table 3, our method
gives 1 point increase over MHQA-GRN w/ only same, and
it gives more increase in WikiHop (comparing all types
with only same in Table 2). Both results indicate that our
method could capture more useful information for multi-
hop QA tasks, compared to the methods developed for
previous multi-passage QA tasks. This is likely because
our method integrates not only evidences for an entity
but also these for other related entities.

The leaderboard reports SplitQA with additional sub-
question annotations and gold answers for sub-questions.
These pairs of sub-questions and answers are used as addi-
tional data for training SplitQA. The above approach relies
on annotations of ground-truth answers for sub-questions
and semantic parses, thus is not practically useful in gen-
eral. However, the results have additional value since it can
be viewed as an upper bound of SplitQA. Note that the gap
between this upper bound and our MHQA-GRN is small,
which further proves that larger improvement can be
achieved by introducing structural connections on the pas-
sage side to facilitate evidence integration.

8 CONCLUSION

We have introduced a new approach for tackling multi-
hop reading comprehension (MHRC), with a graph-based
evidence integration process. Given a question and a list
of passages, we first connect related evidence in reference
passages into a graph, and then adopt recent graph neural
networks to encode resulted graphs for performing evi-
dence integration. Results show that the three types of
edges are useful on combining global evidence and that
the graph neural networks are effective on encoding com-
plex graphs resulted by the first step. Our approach shows
highly competitive performances on two standard MHRC
datasets.
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